Porous media: The Muskat problem in three dimensions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Porous media: the Muskat problem in 3D

The Muskat problem involves filtration of two incompressible fluids throughout a porous medium. In this paper we shall discuss in 3-D the relevance of the RayleighTaylor condition, and the topology of the initial interface, in order to prove its local existence in Sobolev spaces.

متن کامل

Topological Mixing in Three-Dimensional Porous Media

The topological complexity inherent to all porous media can impart complicated transport dynamics under steady flow conditions. Recently, it has been established [2] that such topological complexity imparts ubiquitous and persistent chaotic advection via a 3D fluid mechanical analogue of the baker’s map. In the presence of molecular diffusion, chaotic Lagrangian dynamics are well-known to impar...

متن کامل

Three Pressures in Swelling Porous Media

For a two-phase swelling porous medium, two pressures have been previously defined thermodynamically in terms of intensive variables for each phase: one relating the change in energy with respect to specific volume, and the other relating the change in energy with respect to volume fraction. Within the framework of Hybrid Mixture Theory and hence the Coleman and Noll technique of exploiting the...

متن کامل

The Kissing Problem in Three Dimensions

The kissing number k(3) is the maximal number of equal size nonoverlapping spheres in three dimensions that can touch another sphere of the same size. This number was the subject of a famous discussion between Isaac Newton and David Gregory in 1694. The first proof that k(3) = 12 was given by Schütte and van der Waerden only in 1953. We present a new solution of this problem.

متن کامل

Siegel ’ s Problem in Three Dimensions

We discuss our recent solution to Siegel’s 1943 problem concerning the smallest co-volume lattices of hyperbolic 3-space. Over the last few decades the theory of Kleinian groups—discrete groups of isometries of hyperbolic 3-space—has flourished because of its intimate connectionswith low-dimensional topology and geometry and has been inspired by thediscoveries ofW. P. Thurston. The culminationm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis & PDE

سال: 2013

ISSN: 1948-206X,2157-5045

DOI: 10.2140/apde.2013.6.447